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Abstract 

It is shown that if l" is the propagation vector of a null Maxwell field in a space-time with 
metric ~ob, then it is also the propagation vector in the space-time gob = ~~ + 2flolb. This 
result, together with the Robinson metric for vacuum gravitational fields and Hughston's 
generalization to radiating fields, is used to set up equations for combined gravitational 
and electromagnetic null.fields with special reference to fields with non-zero twist. 

1. Introduction 

A Maxwell null field with zero current implies the existence of a shear-free 
geodesic congruence. This is also true for an Einstein-Maxwell field with 
which is associated a non-zero null current distribution (Goodinson & 
Newing, 1970). When the congruence is also twist free, the metric of space- 
time may be reduced to a standard form (Wyman & Trollope, 1965; 
Geroch, 1966; Goodinson & Newing, 1970). When the congruence is 
diverging with non-zero twist, a standard form for the space-time metric is 
provided by the Robinson metric (Robinson et al., 1969; Robinson & 
Robinson, 1969). Hughston (1971) has used the Robinson metric to con- 
struct a generalized Vaidya radiating metric and this present paper will 
show that such metrics include metrics admitting Einstein-Maxwell null 
fields with non-zero twist. 

In this paper, the notation and definitions of the Robinson and Hughston 
papers are adopted. 

2. Maxwell Null Fields in Related Space-Times 

Consider space-times defined by the metric tensors ~b and gab = #,ab + 
2flalb, where I a is a null vector in the first space-time, then with signature +2, 

gab = 2rht, r~b~ - 21t, hb~ 
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where la, ha, rha, rha is a null tetrad such that for real coordinates, Io h a = - l ,  
rhd~ ~ = 1. 

The corresponding tetrad for gab may be taken to be 

la = I., ma = rh., na =ha - f ~ o  

the contravariant vectors being 

1" = I a, m a = ih a, n a = h a + f l  a 

Suppose k a is parallel to the propagation vector of a Maxwell null field 
in space-time with metric~ab ,then choosing rha so that itarhb J is self-dual, 
the Maxwell equations are 

~ (V(~) ~- e'~ I ta ,~) ,b = i a (2.1) 

wherej  a is a real vector in the case of a real coordinate system. 
Since the determinant ~ of the metric tensor ~ab is equal to that of gab, 

(2.1) are also the Maxwell equations for the space-time with metric tensor 
gob. 

T h e o r e m  

If  the null vectors 1~, rha define a Maxwell null field in space-time with 
metric tensor ~ab, then these vectors also define a Maxwell field in space- 
time with metric ~ab + 2fTaTb. 

Consider now the Robinson metric 

ds 2 = 2 P  2 d~d~ + 2(dp  + Z d {  + Z.d~) d S  + 2 S ( d S )  2 (2.2) 
dS = a(bd{ + ad~ + da) = ka dx a 

where p and a are real coordinates and ~ is complex. In this coordinate 
system, null tetrad vectors la, ha, rh~, r~ a for the associated metric dg z defined 
by S = 0 may be taken to be respectively 

[ca = a(baa 1 + b6 ,  z + aaa a) 
Sa = - - Z b a  I - -  Z 6 a  2 - 6a 4 

ta = P f a  I, ~a = 6~ 2 

the coordinates ~, ~, o', p being labelled from 1 to 4. 
The Maxwell equations for a null field with propagation vector parallel 

to ka in space-time (2.2) are therefore 

a/(~)j  a = 2(V'(~) 2 e'* k ta tb~),b 

= 32a(Xe~*),4 + 33a(bXelr 4 
+ 64a[(Xef*) ,2 - (gXei*).3] 

where X =  a P 2  and ~ = a 2 p  4. 
Nowjadx ~ is invariant with respect to coordinate transformations and so 

j a d x  ~ must be real. This reality condition implies that the contravariant 
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components of j "  are such that~ t =]2 with]3 andf l  both real. In the space- 
time g~b these results become ]~ = j2, j3, j4 real which gives 

(Xe'*),4 = 0 (2.3) 
together with b,4 = 0. 

The Maxwell equations for the null field then become 

~ ( ~ ) j "  = h , ~ " [ ( X e " ~ ) , z  - (/~Xe"#),3] (2.4) 
with ~/(~)j" = ~v/(~)j ". 

3. Generalized Vaidya Metr ics  

Robinson et al. have shown that the general metric admitting a null 
geodesic shear-free vector field may be expressed in the form (2.2) with 
P, Z, Z, S functions of all four coordinates and a, b, D independent of p, 
the dilation and twist being given by 

ia 2 0 = (tnP).4, c o = - ~ - P -  Y where Y= i(b - b2) 

Hughston has shown that if (2.2) defines a vacuum gravitational field, then 
the metric 

dg 2 = ds 2 + 2Hp4(p  2 + (22)-1(k. dx") z (3.1) 

defines a radiation field, the Ricci tensor being 

1~ab=(p2+~'22)-lp4H/akakb whereH/~=O,H/2=O,H/4=-3H 
These conditions imply that 

G,a = 0 (3.2) 

where G: = (In Y)I + b a 

this condition constituting a restriction on the parameter b. The parameters 
a, b, u are arbitrary functions of ~, ~, o- as far as the main equations are 
concerned. These functions are related by the subsidiary equations and for 
generalized Vaidya fields, b is further restricted by (3.2). 

For the case of non-zero twist, Y r  0 and Hughston has obtained the 
solution 

H = h(.pa y)-a 

where h = ~/exp {3 j" (Gd~ + Gd~)} and ~/is a constant. Now 

HI3 = p - I (H3  - u311/4) = - 3 H [ I n ( a p  -1 Y)]/3 

- 3 h  
- a4p4 ya  [ln(ae-" Y)].a 

and hence 
/~ab = -3h 

(p2 + ~2) a 4 ya [ln(a e-" Y)],3 k. ko 
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In suitable units, the energy-momentum tensor Ea~ for the Maxwell field of 
Section 2 is 22kokb, and the gravitational equations /~,b + E~b = 0  are 
satisfied if 

3h 
2 e =  [ ln(a  e -u Y)].3 (p2 ..~ ~r~2) a 4 ya  

so that 
2 2 2 -3h  X 2 = a  P 3~ =-~--~-[ae -u Y)-2]. 3 (3.3) 

The conditions for the existence of an Einstein-Maxwell field are then given 
by (2.4) and (3.3), with b subject to the restriction (3.2). 

4. The Auxiliary Conditions 

With reference to Robinson and Robinson, auxiliary conditions which 
are required to be satisfied are given in terms of  defined quantities A and B: 

A = (m - iM)1 + 3A(m - iM)  

B = exp(-3u)[exp(3u)(m + iM)]a + exp(--4u). I 

where I = J22 + 2~J2, J = L1 + L 2. 
Further, Robinson and Robinson obtain expressions for M and J i n  terms 

of  a potential U where U is such that U3 = ae -u 

1 M = ~ exp (-3u) (Un22 - U2211) (4.1) 

Y = e u Ul13 

Particular Solution 

Consider now equation (3.3). In order to obtain a particular class of 
solutions, the restriction (3.2) may be satisfied by taking b,3 = 0 and in this 
case h = r/y3. Making use of the potential U, we have 

X 2 = 3r/(U,3) -3 U, a3 

Defining a real coordinate x to be x = ~ + ~, then particular solutions for 
b and U may be chosen to be 

b = i(1 + x2) -1 

U = e'~/(1 + x 2) 

This choice of U is such that 

Ull -- 0, Un3 - 0, 

(4.2) 

Ul122 = 0 

and it is therefore obvious from (4.1) that both M and J are zero. A and B 
can thus be made to vanish if m is put equal to zero, and so the auxiliary 
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condit ions A = 0, B = 0 corresponding to a vacuum background metric, 
can be satisfied. 

5. The  M a x w e l l  Equat ions  

F r o m  Section 2, the current  is given by 

V'(~) j  a = 6,~ 2 - (SXe~*).3] 

i f  the complexion q~ is such that  $ -- •(x). With the choice (4.2) for  b and U, 
it follows that  

X 2 = 3r/e-2#(1 + x2) -x 

:(.2 = - X x ( 1  + x2) - ' ,  X a = - X ,  Y--  -4x(1  + x2) -2 ( # 0 )  

and so 

V(~)J"  = 6,a Ze '* ( l  + x2) -1 [ - x  + i{(1 + x 2) ~b' - t}] 

where d?' = d~a/dx. The reality condit ion f o r j "  implies that 

(1 + x 2) ~b' - 1 = x t a n  $ (5.1) 

thus giving a real current  

v ' (~)J"  = X(1 + x2) -1 Ix 2 + {(1 + x 2) ~b' - 1}2] '/2 3," (5.2) 

Defining quantities p and q such that  

p = cos 0 sin q~ q = cos 0 cos 

and putt ing x = tan0,  equat ion (5.1) can be re-written as 

dp 
-do = q 

and so p must  satisfy 

( ap~ ~ 
d-0] + p2 = cos 2 0 

The complexion $ can now be expressed in terms o f x  a n d p  by the equation 

= sin-~{p(1 + x2) ~/2} (5.3) 

and (5.2) can be written 

x / (~ ) j "  = x e-~(1 - x2) -3:2 see ~b5," (5.4) 

i.e. j a  in terms o f  x, ~, p. 
Thus a part icular  solution o f  (2.4), (3.2), (3.3) is provided by equations 

(4.2) and (5.3) where p is a solution o f  the equation 

d-0J + p 2 = c o s  20 

and so an Einstein-Maxwell  null field exists and the current  density vector  
is given by (5.4). 
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